Redox modulation of oxidative stress by Mn porphyrin-based therapeutics: the effect of charge distribution.
نویسندگان
چکیده
We evaluate herein the impact of positive charge distribution on the in vitro and in vivo properties of Mn porphyrins as redox modulators possessing the same overall 5+ charge and of minimal stericity demand: Mn(III) meso-tetrakis(trimethylanilinium-4-yl)porphyrin (MnTTriMAP(5+)), Mn(III) meso-tetrakis(N,N'-dimethylpyrazolium-4-yl)porphyrin (MnTDM-4-PzP(5+)), Mn(III) meso-tetrakis(N,N'-dimethylimidazolium-2-yl)porphyrin (MnTDM-2-ImP(5+)), and the ortho and para methylpyridinium complexes Mn(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (MnTM-4-PyP(5+)) and Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin (MnTM-2-PyP(5+)). Both Mn(III)/Mn(II) reduction potential and SOD activity within the series follow the order: MnTTriMAP(5+)<MnTDM-4-PzP(5+)<MnTM-4-PyP(5+)<MnTM-2-PyP(5+)<MnTDM-2-ImP(5+). The kinetic salt effect (KSE) on the catalytic rate constant for superoxide dismutation (k(cat)) indicates that the electrostatic contribution to the O(2)*(-) dismutation is the greatest with MnTM-2-PyP(5+) and follows the order: MnTM-4-PyP(5+)<MnTDM-4-PzP(5+) approximately MnTDM-2-ImP(5+)<MnTM-2-PyP(5+). The KSE observed on k(cat) suggests that the charges are relatively confined within specific regions of the aryl rings. Whereas the charges in imidazolium, pyrazolium, and MnTM-4-PyP(5+) compounds are distributed in-plane with the porphyrin ring, the charges of MnTM-2-PyP(5+) are either above or below the plane, which channels the negatively-charged superoxide toward the axial positions of the Mn porphyrin more efficiently, and leads to the highest KSE. This mimics the tunneling effect observed in the SOD enzymes themselves. The modulation of the reactivity of the Mn center by the electronic perturbations caused by the meso-aryl substituent could be explained by DFT calculation, whereby a correlation between the Mn(III)/Mn(II) reduction potential (and/or SOD activity) and meso-aryl fragment softness descriptors for nucleophilic (s(f)(+)) and radical (s(f)(o)) attacks was observed. MnTDM-4-PzP(5+) and MnTM-4-PyP(5+) did not protect SOD-deficient E. coli grown aerobically, which is in agreement with their low k(cat). MnTM-2-PyP(5+) and MnTDM-2-ImP(5+) have similar high k(cat), but MnTDM-2-ImP(5+) was significantly less protective to E. coli, probably due to its bulkier size, decreased cellular uptake, and/or observed toxicity. The placement of charges closer to the metal center and spatial charge localization increases both the in vitro and the in vivo SOD activity of the compound.
منابع مشابه
Late administration of Mn porphyrin-based SOD mimic enhances diabetic complications☆
Mn(III) N-alkylpyridylporphyrins (MnPs) have demonstrated protection in various conditions where increased production of reactive oxygen/reactive nitrogen species (ROS/RNS), is a key pathological factors. MnPs can produce both pro-oxidative and antioxidative effects depending upon the cellular redox environment that they encounter. Previously we reported (Free Radic. Res. 39: 81-8, 2005) that w...
متن کاملEffect of Additives on Mn/SiO2 Based Catalysts on Oxidative Coupling of Methane
The Oxidative Coupling of Methane (OCM) over M-Na-Mn/SiO2 catalysts (M=W, Cr, Nb and V) was investigated using a continuous-flow quartz reactor at 775°C, 1 atm and 100 cm3min-1 gas flow rates, and correlated with the observed structure and redox properties.The interaction effects of the metal-metal and metal-support on the...
متن کاملDesign, Mechanism of Action, Bioavailability and Therapeutic Effects of Mn Porphyrin-Based Redox Modulators
Based on aqueous redox chemistry and simple in vivo models of oxidative stress, Escherichia coli and Saccharomyces cerevisiae, the cationic Mn(III) N-substituted pyridylporphyrins (MnPs) have been identified as the most potent cellular redox modulators within the porphyrin class of drugs; their efficacy in animal models of diseases that have oxidative stress in common is based on their high abi...
متن کاملSuperoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential.
Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia-reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological co...
متن کاملAn educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins – From superoxide dismutation to H2O2-driven pathways
Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2(-) dismutation by SOD enzymes. Several MnPs are of potency similar to SOD en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 9 شماره
صفحات -
تاریخ انتشار 2008